
SIXNET UDR Driver

© 2018 PTC Inc. All Rights Reserved.



SIXNET UDR Driver

Table of Contents

SIXNET UDR Driver 1

Table of Contents 2

SIXNET UDR Driver 4

Overview 4

External Dependencies 5

Driver Setup 6

SIXNET Software Components: Universal Driver Components 6

Device Setup 7

Networks 7

Channel Setup 8

Channel Properties — General 8

Channel Properties — Write Optimizations 9

Channel Properties — Advanced 10

Channel Properties - Communication 11

Device Properties 12

Device Properties — General 12

Device Properties — ScanMode 14

Device Properties — Timing 14

Device Properties — Tag Generation 15

Device Properties - Station 17

Device Properties - Settings 18

Device Properties - Block Sizes 19

Device Properties - Tag Import 19

Slave Devices 20

Data Types Description 22

Address Descriptions 23

Master Open Addressing 23

Slave Addressing 24

Optimizing Communications 25

Automatic Tag Database Generation 27

Error Descriptions 29

Missing address 29

Device address '<address>' contains a syntax error 30

Address <address>' is out of range for the specified device or register 30

Data Type '<type>' is not valid for device address '<address>' 30

www.ptc.com

2



SIXNET UDR Driver

Device address '<address>' is Read Only 30

Array size is out of range for address '<address>' 31

Array Support is not available for the specified address: '<address>' 31

Device <Device name>' is not responding 31

Unable to write to '<address>' on device '<device name>' 32

Could not allocate memory for slave device '<device name>' 32

Failed to create master SIXNET interface for channel '<channel>' 32

Failed to create SIXNET interface for slave device '<station number>' on channel '<channel>' 32

Failed to openmaster session for channel '<channel>' 33

Failed to open session for slave device '<station number>' on channel '<channel>' 33

Failed to build request for device '<station number>' on channel '<channel>' 34

Failed to send request for device '<station number>' on channel '<channel>' 34

Failed to build ACK for device '<station number>' on channel '<channel>' 34

Failed to send ACK for device '<station number>' on channel '<channel>' 34

Failed to build NAK for device '<station number>' on channel '<channel>' 35

Failed to send NAK for device '<station number>' on channel '<channel>' 35

Tag import failed due to lowmemory resources 35

File exception encountered during tag import 35

Imported tag name changed from '<old name>' to '<new name>' (record: <record>) 36

Tag '<name>' (record: <record>) could not be imported due to name conflict 36

Tag not imported due to unknown I/O type (record: <record>) 36

Tag could not be imported due to unsupported data type (record: <record>) 37

Index 38

www.ptc.com

3



SIXNET UDR Driver

SIXNET UDR Driver
Help version 1.022

CONTENTS

Overview
What is the SIXNET UDR Driver?

Driver Setup
How do I configure this driver?

Device Setup
How do I configure a device for use with this driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location on a SIXNET device?

Automatic Tag Database Generation
How can I easily configure tags for this driver?

Optimizing Communications
How do I get the best performance from this driver?

Error Descriptions
What error messages does this driver produce?

Overview
The SIXNET UDR Driver provides an easy and reliable way to connect SIXNET UDR devices to OPC Client
applications, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for
use with all SIXNET Controllers, RTUs and I/O devices that support the SIXNET UDR (Universal DRiver)
protocol. This includes all VersaTRACK, SixTRACK, EtherTRACK, RemoteTRAK and SiteTRAK products.

This driver was created in partnership with SIXNET. SIXNET endorses the use of this driver as the SIXNET
official OPC interface for their products. This driver uses SIXNET supplied communication software modules
that enable it to run simultaneously with the SIXNET I/O Tool Kit and ISaGRAF Workbench. This unique
capability allows users to perform configuration changes, Datalog file transfers, analog calibrations, and a
full suite of other system functions while I/O updating continues in real-time. This is true not only of Ethernet
connections but of serial communications as well.

Note: This multitasking capability works over phone lines and wireless radio connections.

Unsolicited Communication-Report by Exception
Multiple virtual slave devices can be created to accept and process unsolicited commands as though they
were actual I/O devices on the network. Solicited communication (where the I/O device in the field is a slave)
and unsolicited communication (where the I/P device in the field is the master) can be performed

www.ptc.com

4



SIXNET UDR Driver

simultaneously. In other words, master and slave operationmay occur simultaneously over separate
channels in the same SIXNET driver. For more information, refer to Slave Devices.

External Dependencies
This driver has external dependencies. It uses two SIXNET Universal Driver (UDR) communications library
components supplied by SIXNET. For more information, refer to SIXNET Software Components: Universal
Driver Components.

www.ptc.com

5



SIXNET UDR Driver

Driver Setup
The SIXNET UDR Driver makes use of some of the same software components used by SIXNET applications,
such as the Remote I/O Tool Kit. This permits the simultaneous operation of these applications and this
driver. The OPC server setup will install these components along with this driver. For more information
regarding these components, refer to SIXNET Software Components: Universal Driver Components.

For driver-specific channel and device properties, refer to Channel Properties and Device Properties.

For recommendations on optimizing configuration, refer to Optimizing Your SIXNET UDR Communications.

SIXNET Software Components: Universal Driver Components
This driver uses two SIXNET Universal Driver (UDR) communications library components supplied by SIXNET:
Six32com.exe and Udrcom32.dll. These files will be placed in the server installation folder when the driver is
installed. If copies of these files were previously installed in the Windows system directory with a SIXNET
application, they will not be affected by the driver installation.

Limitations
A session is created each time an applicationmakes a connection to a given COM port or to the default
Ethernet adapter through UDR components. There is a limit of 64 sessions per COM port plus 64 for the
Ethernet adapter. This driver will start a session for each channel, plus an additional session for each slave
device. Channel sessions will not be started until the scanning of tags belonging to its master devices has
begun. Likewise, slave device sessions are not started until scanning of its tags has begun. A tag is scanned
as long as a client that references that tag is connected to the server. Once a session is started by this
driver, it is not ended until the server is shutdown or a new project is loaded. SIXNET applications may start
one or more sessions and contribute to the total serviced by these components. The limit of 64 sessions per
port/Ethernet should not be prohibitive unless users need a large number of slave devices on a single serial
or Ethernet line.

Performance
There is a minimum turnaround time of approximately 15 ms per transaction imposed by the UDR
components. This limits the performance of the driver to roughly 64 transactions per second for a given
channel. Both these components and the driver support multi-threading, however, so users may be able to
improve performance by using multiple channels. If the device and network is fast enough, users may be
able to nearly double the total transaction rate by creating a duplicate device on a second channel and
dividing the tag blocks equally between those devices. For more information, refer toOptimizing Your
SIXNET UDR Communications.

INI File
The UDR components read serial port configuration parameters (such as parity and baud rate) from a
Windows application initialization file. This file is called sixtrack.ini and is located in the Windows folder. Both
this driver and SIXNET applications will create this file if needed andmodify its contents according to user
input.

Important: If this driver is used along with SIXNET applications on the same computer, the serial port
configurations must be the same. If the settings conflict, it is likely that communication problems will arise
because the settings received by the UDR components cannot be predicted.

Uninstalling SIXNET Applications
If users decide to uninstall SIXNET applications, the operation of the SIXNET UDR Driver will not be affected.

www.ptc.com

6



SIXNET UDR Driver

Device Setup
Supported Devices
All SIXNET Controllers, RTUs and I/O devices that support the SIXNET UDR protocol. This includes the all of
the following products:

VersaTRACK
SixTRACK
EtherTRACK
RemoteTRAK
SiteTRAK

Supported Protocol
SIXNET UDR protocol over serial lines and Ethernet using UDP.

TCP/IP
TCP/IP must be properly installed in order to use this driver with Ethernet devices. For more information,
refer to the Windows documentation on setting up TCP/IP. For more information, refer to Driver Setup.

Device IDs
This driver is limited to 8192 devices. The number of these devices that may operate as slaves is limited to
64 per COM port plus 64 over Ethernet. For more information, refer to SIXNET Software Components:
Universal Driver Components.

Device Configuration
Each device on a network must be configured with a unique station number. Devices on separate,
unconnected networks may have the same station number. Devices that act as gateways to other networks,
such as an EtherTRAK unit connected to a network of RemoteTRAK units on an RS-485 party line, must be
configured to operate in pass-thru mode.

Controller and RTU units may be programmed to send unsolicited requests to the driver's slave devices,
although not all UDR commands are supported. For more information, refer to Slave Devices.

Networking
This driver supports communications over serial lines and Ethernet using UDP. Ethernet performance is not
inhibited by the simultaneous use of serial communication. Devices onmulti-layered networks may be
addressed. For more information, refer toNetwork.

Networks
SIXNET offers a wide range of products, allowing unlimited possibilities for network configuration. One
powerful feature of some devices is the ability to pass messages through to other network layers. For
example, refer to the image below.

www.ptc.com

7



SIXNET UDR Driver

Here, a number of RemoteTRAKmodules are connected to an RS-485 serial line. This network layer is
connected to an Ethernet network via an EtherTRAKmodule. The EtherTRAKmodule is configured to operate
in "Pass-thru mode" so that it will forwardmessages to and from the RemoteTRAKmodules. If the EtherTRAK
module receives a request with a station number matching its own, it will process the request. If the station
number does not match, it will repeat the message out its RS-485 port. One of the RemoteTRAKmodules will
respond if its station number matches that in the request.

To communicate with all of the modules in this setup, a channel that uses this driver must be defined in the
OPC server. Next, a device must be added to the channel for each of the modules. Tags can then be added
to each device to access the I/O of the associatedmodule.

Since the Host PC is directly connected to the Ethernet network in this example and not to the RS-485 serial
line, the channel must be configured to use Ethernet. For more information, refer to Communications
Parameters.

The device associated with the EtherTRAKmodule must be configured to use the IP address and station
number of the EtherTRAKmodule. The devices associated with the RemoteTRAKmodules must use the IP
address of the EtherTRAKmodule, and the station number of the target RemoteTRAKmodule. Similar
principles hold when dealing with other network configurations.

See Also: Station

Channel Setup
A channel represents a serial line connected to one of the computer's COM ports or an Ethernet network
connected to the computer's defaultNetwork Interface Card (NIC). Channel Properties are used to specify
what type of connection is desired and what other properties are shared by devices on that network. For
more information on this driver's specific Channel Properties, refer to Communications Parameters.

Note: Up to 32 channels can be created, including multiple channels that connect to the same COM port
or Ethernet adapter.

Channel Properties — General
This server supports the use of simultaneous multiple communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same
communications driver or with unique communications drivers. A channel acts as the basic building block of
an OPC link. This group is used to specify general channel properties, such as the identification attributes
and operating mode.

Identification

www.ptc.com

8



SIXNET UDR Driver

Name: User-defined identity of this channel. In each server project, each channel name must be unique.
Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: User-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Selected protocol / driver for this channel. This property specifies the device driver that was selected
during channel creation. It is a disabled setting in the channel properties.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. With this in mind, changes to the properties
should not be made once a large client application has been developed. Utilize the User Manager to prevent
operators from changing properties and restrict access rights to server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead
processing, it is recommended that they be utilized when needed and disabled when not. The default is
disabled.
Note: This property is not available if the driver does not support diagnostics.
For more information, refer to "Communication Diagnostics" in the server help.

Channel Properties — Write Optimizations
As with any server, writing data to the device may be the application's most important aspect. The server
intends to ensure that the data written from the client application gets to the device on time. Given this goal,
the server provides optimization properties that can be used to meet specific needs or improve application
responsiveness.

Write Optimizations

Optimization Method: controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags:  This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client
applications is sent to the target device. This mode should be selected if the write operation order or
the write item's content must uniquely be seen at the target device.

www.ptc.com

9



SIXNET UDR Driver

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.

Note: This option does not attempt to optimize writes to Boolean values. It allows users to
optimize the operation of HMI data without causing problems with Boolean operations, such as a
momentary push button.

l Write Only Latest Value for All Tags:  This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows
optimization for applications with continuous writes versus a more balanced back and forth data flow.

Note: It is recommended that the application be characterized for compatibility with the write
optimization enhancements before being used in a production environment.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

Non-Normalized Float Handling: A non-normalized value is defined as Infinity, Not-a-Number (NaN), or as
a Denormalized Number. The default is Replace with Zero. Drivers that have native float handling may
default to Unmodified. Non-normalized float handling allows users to specify how a driver handles non-
normalized IEEE-754 floating point data. Descriptions of the options are as follows:

l Replace with Zero:  This option allows a driver to replace non-normalized IEEE-754 floating point
values with zero before being transferred to clients.

l Unmodified:  This option allows a driver to transfer IEEE-754 denormalized, normalized, non-
number, and infinity values to clients without any conversion or changes.

Note: This property is not available if the driver does not support floating point values or if it only supports
the option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

www.ptc.com

10



SIXNET UDR Driver

For more information on the floating point values, refer to "How To ... Work with Non-Normalized Floating
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties - Communication

Use Ethernet
This property specifies whether the channel is to use serial (default) or Ethernet communication.

COM Port
This property specifies the COM port that will be used for serial communications. The range is 1 to 255. The
default setting is COM1.

Baud Rate
This property specifies the baud rate that should be used to configure the selected COM port. Supported
baud rates are as follows: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400 and 57600. The
default setting is 9600.

Data Bits
This property specifies the number of data bits per data word (7 or 8) and the data format (binary or ASCII
Hex) used with serial communication. For example, a value of 10 is sent as a single byte 0x0A using binary
format, and as two bytes 0x31 (ASCII "1") 0x30 (ASCII "0") using ASCII Hex format. Supported data bit and
format combinations are: 8 bit binary/RTU data, 8 bit ASCII (hex) data and 7 bit ASCII (hex) data. The default
setting is 8 bit binary/RTU data.

Note: Binary format is always used with Ethernet communications.

Parity
This property specifies the type of parity the data should use. Choose from: None, Even, Odd, Mark and
Space. The default setting is None.

Stop Bits
This property specifies the number of stop bits per data word. Choose between 1 or 2. The default setting is
1.

www.ptc.com

11



SIXNET UDR Driver

Flow Control
This property specifies how the RTS and DTR control lines should be utilized. Choose from None, Hardware
and Xon/Xoff. The default setting is None.

See Also: SIXNET Software Components: Universal Driver Components andOptimizing Your
SIXNET UDR Communications.

Device Properties
Each physical device to be polled must be represented by a device object in the server. Slave device objects
may be created to act as virtual I/O devices on the network. To enable Slave mode, click the Device
Properties | General and then select the Slave Model. The following topics describe how to configure
device objects:

Station
Settings
Block Sizes
Tag Import
Slave Devices

Note: This driver is limited to 8192 devices. The number of these devices that may operate as slaves is
limited to 64 per COM port plus 64 over Ethernet. For more information, refer to SIXNET Software
Components: Universal Driver Components.

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name:  This property specifies the name of the device. It is a logical user-defined name that can be up to
256 characters long, andmay be used onmultiple channels.
Note: Although descriptive names are generally a good idea, some OPC client applications may have a

limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".

For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server
help.

www.ptc.com

12



SIXNET UDR Driver

Description: User-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device. This property specifies the driver selected during channel
creation. It is disabled in the channel properties.

Model:  This property specifies the specific type of device that is associated with this ID. The contents of the
drop-downmenu depends on the type of communications driver being used. Models that are not supported
by a driver are disabled. If the communications driver supports multiple device models, the model selection
can only be changed when there are no client applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model
selection to the physical device. If the device is not represented in the drop-downmenu, select a model that
conforms closest to the target device. Some drivers support a model selection called "Open," which allows
users to communicate without knowing the specific details of the target device. For more information, refer
to the driver help documentation.

ID:  This property specifies the device's station / node / identity / address. The type of ID entered depends
on the communications driver being used. For many drivers, the ID is a numeric value. Drivers that support a
Numeric ID provide users with the option to enter a numeric value whose format can be changed to suit the
needs of the application or the characteristics of the selected communications driver. The ID format can be
Decimal, Octal, and Hexadecimal. If the driver is Ethernet-based or supports an unconventional station or
node name, the device's TCP/IP address may be used as the device ID. TCP/IP addresses consist of four
values that are separated by periods, with each value in the range of 0 to 255. Some device IDs are string
based. There may be additional properties to configure within the ID field, depending on the driver.

Operating Mode

Data Collection:  This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not
attempted when a device is disabled. From a client standpoint, the data is marked as invalid and write
operations are not accepted. This property can be changed at any time through this property or the device
system tags.

Simulated:  This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System
tag allows this property to be monitored from the client.

2. In Simulationmode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

www.ptc.com

13



SIXNET UDR Driver

 Simulation Mode is for test and simulation purposes only. It should never be used in a production
environment.

Device Properties — Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device
communications. Synchronous and asynchronous device reads and writes are processed as soon as
possible; unaffected by the ScanMode properties.

Scan Mode: specifies how tags in the device are scanned for updates sent to subscribing clients.
Descriptions of the options are:

l Respect Client-Specified Scan Rate:  This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate:  This mode specifies the maximum scan rate to be used.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate:  This mode forces tags to be scanned at the specified rate for
subscribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only:  This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate:  This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Timing
The device Timing properties allow the driver's response to error conditions to be tailored to fit the
application's needs. In many cases, the environment requires changes to these properties for optimum
performance. Factors such as electrically generated noise, modem delays, and poor physical connections
can influence howmany errors or timeouts a communications driver encounters. Timing properties are
specific to each configured device.

www.ptc.com

14



SIXNET UDR Driver

Communications Timeouts

Connect Timeout:  This property (which is used primarily by Ethernet based drivers) controls the amount of
time required to establish a socket connection to a remote device. The device's connection time often takes
longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The
default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not
supported by the driver, it is disabled.

Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when
communicating via UDP.

Request Timeout:  This property specifies an interval used by all drivers to determine how long the driver
waits for a response from the target device to complete. The valid range is 50 to 9,999,999 milliseconds
(167.6667 minutes). The default is usually 1000 milliseconds, but can vary depending on the driver. The
default timeout for most serial drivers is based on a baud rate of 9600 baud or better. When using a driver
at lower baud rates, increase the timeout to compensate for the increased time required to acquire data.

Attempts Before Timeout:  This property specifies howmany times the driver issues a communications
request before considering the request to have failed and the device to be in error. The valid range is 1 to
10. The default is typically 3, but can vary depending on the driver's specific nature. The number of attempts
configured for an application depends largely on the communications environment. This property applies to
both connection attempts and request attempts.

Timing

Inter-Request Delay:  This property specifies how long the driver waits before sending the next request to
the target device. It overrides the normal polling frequency of tags associated with the device, as well as
one-time reads and writes. This delay can be useful when dealing with devices with slow turnaround times
and in cases where network load is a concern. Configuring a delay for a device affects communications with
all other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may
limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.

Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not available.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.
Select communications drivers can be configured to automatically build a list of tags that correspond to

www.ptc.com

15



SIXNET UDR Driver

device-specific data. These automatically generated tags (which depend on the nature of the supporting
driver) can be browsed from the clients.

Not all devices and drivers support full automatic tag database generation and not all support the same data
types. Consult the data types descriptions or the supported data type lists for each driver for specifics.

If the target device supports its own local tag database, the driver reads the device's tag information and
uses the data to generate tags within the server. If the device does not natively support named tags, the
driver creates a list of tags based on driver-specific information. An example of these two conditions is as
follows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the
tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/Omodule types, the
communications driver automatically generates tags in the server that are based on the types of I/O
modules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more
information, refer to the property descriptions below.

On Property Change: If the device supports automatic tag generation when certain properties change, the
On Property Change option is shown. It is set to Yes by default, but it can be set toNo to control over when
tag generation is performed. In this case, the Create tags actionmust be manually invoked to perform tag
generation.

On Device Startup: This property specifies when OPC tags are automatically generated. Descriptions of the
options are as follows:

l Do Not Generate on Startup:  This option prevents the driver from adding any OPC tags to the tag
space of the server. This is the default setting.

l Always Generate on Startup:  This option causes the driver to evaluate the device for tag
information. It also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup:  This option causes the driver to evaluate the target device for tag
information the first time the project is run. It also adds any OPC tags to the server tag space as
needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save
from the Tools | Optionsmenu.

On Duplicate Tag: When automatic tag database generation is enabled, the server needs to know what to
do with the tags that it may have previously added or with tags that have been added or modified after the
communications driver since their original creation. This setting controls how the server handles OPC tags

www.ptc.com

16



SIXNET UDR Driver

that were automatically generated and currently exist in the project. It also prevents automatically
generated tags from accumulating in the server.

For example, if a user changes the I/Omodules in the rack with the server configured to Always Generate
on Startup, new tags would be added to the server every time the communications driver detected a new
I/Omodule. If the old tags were not removed, many unused tags could accumulate in the server's tag space.
The options are:

l Delete on Create:  This option deletes any tags that were previously added to the tag space before
any new tags are added. This is the default setting.

l Overwrite as Necessary:  This option instructs the server to only remove the tags that the
communications driver is replacing with new tags. Any tags that are not being overwritten remain in
the server's tag space.

l Do not Overwrite:  This option prevents the server from removing any tags that were previously
generated or already existed in the server. The communications driver can only add tags that are
completely new.

l Do not Overwrite, Log Error:  This option has the same effect as the prior option, and also posts an
error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the
communications driver as well as any tags that have been added using names that match generated
tags. Users should avoid adding tags to the server using names that may match tags that are
automatically generated by the driver.

Parent Group:  This property keeps automatically generated tags frommixing with tags that have been
enteredmanually by specifying a group to be used for automatically generated tags. The name of the group
can be up to 256 characters. This parent group provides a root branch to which all automatically generated
tags are added.

Allow Automatically Generated Subgroups:  This property controls whether the server automatically
creates subgroups for the automatically generated tags. This is the default setting. If disabled, the server
generates the device's tags in a flat list without any grouping. In the server project, the resulting tags are
named with the address value. For example, the tag names are not retained during the generation process.

Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system
automatically increments to the next highest number so that the tag name is not duplicated. For example, if
the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been
modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be
accessed from the System tags allows a client application to initiate tag database creation.

Note: Create tags is disabled if the Configuration edits a project offline.

Device Properties - Station

www.ptc.com

17



SIXNET UDR Driver

Remote Device Settings (Master Mode)
The Remote Device Settings refer to the physical device on a network with which the driver device object
communicates. They must be set when this device is set to operate in master mode. The remote device
settings will be disabled when slave mode is selected.

Single Station Mode
Enable this property if there is only one device on the network and it is configured to use the special single
stationmode station number. The default setting is disabled.

Remote Station Number
This property specifies the station number of the device to poll. Valid station numbers range from 0 to
15999. The default setting is 1.

Note: In some devices, the station number 0 has special significance. For more information, refer to the
device's Help documentation.

Remote IP
This property specifies either the IP address of the device to poll or the IP address of a gateway device that
gives access to the specified station. The default IP address is 10.1.0.1. For more information, refer to
Networks.

Local Simulated Device Settings (Slave Mode)
The Local Simulated Device Settings refer to a simulated I/O device created by the driver. They must be set
when this device is set to operate in slave mode. Whenmaster mode is selected, these settings will be
disabled.

Local Station Number
This property specifies a unique station number for the slave device. Valid station numbers range from 0 to
15999. The default setting is 1.

Device Properties - Settings
Multi-byte data can be stored in device registers using a number of byte and word order formats, depending
on both the device programming and the format used by external devices. These settings can be used to
specify the byte order.

Use Default Byte Order
Data is stored in the device using Motorola (Big-Endian) byte order by default.

www.ptc.com

18



SIXNET UDR Driver

First Word Low in 32 Bit Data Types
Two consecutive 16 bit registers are used to store 32 bit values. By default, the register with the lower
address will contain the low word. Byte and word order settings do not apply to 32 bit types.

Device Properties - Block Sizes

Digital Data
Digital data can be read from 8 to 800 points (bits) at a time. A higher block size means more points will be
read from the device in a single request. Block size can be reduced if data needs to be read from non-
contiguous locations within the device. Digital Input and Output block sizes can be set in steps of 8.

Analog Data
Analog data can be read from 1 to 120 locations (words) at a time. A higher block size means more register
values will be read from the device in a single request. Block size can be reduced if data needs to be read
from non-contiguous locations within the device.

Notes:

1. These settings refer to the binary representation of the data. If the ASCII Hex format is used, twice
the specified number of bytes will be read. For more information, refer to Communications
Parameters.

2. The request size for 32 bit types is half that for 16 bit types; meaning, it is the same number of bytes
but half the number of registers. The request size for 32 bit types is specified in Device Properties.

Device Properties - Tag Import

Tag Import File
This property specifies the exact location of the SIXNET I/O Tool Kit tag export file that the driver should use
when Automatic Tag Database Generation is enabled for the device.

Apply Scaling

www.ptc.com

19



SIXNET UDR Driver

Enable this property to have generated tags use the scaling settings provided in the import file. Scaling is
applicable to analog input (AX) and outputs (AY) only. Linear scaling (with a scaled data type of float) and no
clamping is assumed. These and other scale settings may be adjustedmanually after tags are generated.

Include Descriptions
Enable this property to include the tag descriptions in generated tags. The tag descriptions are given in the
export file.

Notes:

1. Although tags for multiple stations may be included in a single export file, the server must import
tags for each of its devices individually. The driver selects a tag for import when the station number
specified in the file is the same as the station number configured for the device. For more
information, refer to Station.

2. f no tag name is specified in the export file, the driver will generate a name of the form "Unnamed_x",
where x is an integer. For more information on configuring the automatic tag database generation
feature (and how to create a tag import file) refer to Automatic Tag Database Generation.

Slave Devices
A device can be configured to operate in slave mode. Each slave device allocates memory for the following
I/O:

I/O Type Address Range Client Access Master Access

Digital Input X0-X32767 Read/Write Read/Write

Digital Output Y0 -Y32767 Read/Write Read/Write

Analog Input AX0-AX32767 Read/Write Read/Write

Analog Output AY0-AY32767 Read/Write Read/Write

Long Input LX0-LX1023 Read/Write Read/Write

Long Output LY0-LY1023 Read/Write Read/Write

Float Input FX0-FX1023 Read/Write Read/Write

Float Output FY0-FY1023 Read/Write Read/Write

Note: All memory is initialized to zero.

Slave devices support the following UDR commands:

Command Code (hex) Description

GETD 0x0A Read digital data (X, Y)

PUTD 0x0E Write digital data (X, Y)

GETA 0x0C Read analog data (AX, AY)

PUTA 0x10 Write analog data (AX, AY)

GETB 0x0B Read byte data (LX, LY, FX, FY)

PUTB 0x0F Write byte data (LX, LY, FX, FY)

IOXCHG 0x20 I/O Exchange (X, Y, AX, AY)

www.ptc.com

20



SIXNET UDR Driver

Notes:

l Digital data types may be 0 for inputs and 1 for outputs.

l Binary and Hex formats are supported, as well as CRC and non-CRC modes. Extended addresses (2-
byte) may be used. Both data byte order options are supported.

l If a request can not be processed, due to invalid address or unsupported command for example, a
NAKmessage will be sent.

l These commands are used automatically when "I/O transfers" and "Remote I/O Links" are configured
in the controller. Users may also explicitly issue these commands from device programming and
custom UDR drivers. In theses cases, refer to the "SIXNET Universal Protocol" document for protocol
specification. This document comes with the SIXNET UDR Driver kit, which may be found on the
support CD that came with the hardware.

www.ptc.com

21



SIXNET UDR Driver

Data Types Description

Data
Type

Description

Boolean Single bit

Word

Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short

Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

BCD
Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.

DWord

Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

Long

Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

LBCD
Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.

Float

32-bit floating point value

The driver interprets two consecutive registers as a floating-point value by making the second
register the high word and the first register the low word.

www.ptc.com

22



SIXNET UDR Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain
specific address information for the model of interest.

Master Open Addressing
Slave Addressing

Master Open Addressing
Open Addressing allows a full range of addresses to accommodate a wide range of SIXNET devices. For the
actual range available in the device, refer to the SIXNET Help documentation. The default data types for
dynamically defined tags are shown in bold.

Address Range Data Type Access

Digital Input X0-X65535 Boolean Read Only

Digital Output Y0-Y65535 Boolean Read/Write

Analog Input

AX0-AX65535

AX0-AX65534

AX0.0-AX0.15 ... AX65535.0-AX65535.15

Word, Short, BCD

DWord, Long, Float, LBCD

Boolean

Read Only

Analog Output

AY0-AY65535

AY0-AY65534

AY0.0-AY0.15 ... AY65535.0-AY65535.15

Word, Short, BCD

DWord, Long, Float, LBCD

Boolean

Read/Write

Long Input LX0-LX65535 DWord, Long, Float, LBCD Read Only

Long Output LY0-LY65535 DWord, Long, Float, LBCD Read/Write

Float Input FX0-FX65535 DWord, Long, Float, LBCD Read Only

Float Output FY0-FY65535 DWord, Long, Float, LBCD Read/Write

Array Support
Arrays are supported for all data types except Boolean. There are twomethods of addressing an array.
Examples are given using Analog Output memory locations.

AYxxxxx [rows] [cols]
AYxxxxx [cols] – (this method assumes "rows" is equal to one)

Rows multiplied by cols multiplied by data size in bytes cannot exceed the block size. The range of address
represented by the array cannot exceed the valid address range of the device.

Note: Use caution whenmodifying 32 bit analog values (AX and AY with a data type of DWord, Long, LBCD
or Float). Each address, for which these data types are allowed, starts at a word offset within the device.
Therefore, DWords AX0 and AX1 overlap at word AX1. Thus, writing to AX0 will also modify the value held in
AX1. It is recommended that users use these data types so that overlapping does not occur. As an example,
when using DWords, use AX0, AX2, AX4 and so on in order to prevent overlapping Words.

See Also:Block Sizes

www.ptc.com

23



SIXNET UDR Driver

Slave Addressing
Slave Addressing is for driver slave devices. The default data types for dynamically defined tags are shown
in bold.

Note: For more information, refer to Slave Devices.

Address Range Data Type Access

Digital Input X0-X32767 Boolean Read/Write

Digital Output Y0-Y32767 Boolean Read/Write

Analog Input

AX0-AX32767

AX0-AX32766

AX0.0-AX0.15 ... AX32767.0-AX32767.15

Word, Short, BCD

DWord, Long, Float, LBCD

Boolean

Read/Write

Analog Output

AY0-AY32767

AY0-AY32766

AY0.0-AY0.15 ... AY32767.0-AY32767.15

Word, Short, BCD

DWord, Long, Float, LBCD

Boolean

Read/Write

Long Input LX0-LX1023 DWord, Long, Float, LBCD Read/Write

Long Output LY0-LY1023 DWord, Long, Float, LBCD Read/Write

Float Input FX0 -FX1023 DWord, Long, Float, LBCD Read/Write

Float Output FY0-FY1023 DWord, Long, Float, LBCD Read/Write

Array Support
Arrays are supported for all data types except Boolean. There are twomethods of addressing an array.
Examples are given using Analog Output memory locations.

AYxxxxx [rows] [cols]
AYxxxxx [cols] – (this method assumes "rows" is equal to one)

Rows multiplied by cols multiplied by data size in bytes cannot exceed the block size. The range of address
represented by the array cannot exceed the valid address range of the device.

Note: Use caution whenmodifying 32 bit analog values (AX and AY with a data type of DWord, Long, LBCD
or Float). Each address, for which these data types are allowed, starts at a word offset within the device.
Therefore, DWords AX0 and AX1 overlap at word AX1. Thus, writing to AX0 will also modify the value held in
AX1. It is recommended that users use these data types so that overlapping does not occur. As an example,
when using DWords, use AX0, AX2, AX4 and so on in order to prevent overlapping Words.

See Also:Block Sizes

www.ptc.com

24



SIXNET UDR Driver

Optimizing Communications
The SIXNET UDR Driver driver has been designed to provide the best performance with the least amount of
impact on the system's overall performance. While the SIXNET UDR Driver driver is fast, there are a couple
of guidelines that can be used in order to control and optimize the application and gain maximum
performance.

Our server refers to communications protocols like SIXNET UDR Driver as a channel. Each channel defined
in the application represents a separate path of execution in the server. Once a channel has been defined, a
series of devices must then be defined under that channel. Each of these devices represents a single SIXNET
UDR controller from which data will be collected. While this approach to defining the application will provide
a high level of performance, it won't take full advantage of the SIXNET UDR Driver driver or the network. An
example of how the applicationmay appear when configured using a single channel is shown below.

Each device appears under a single SIXNET UDR Driver channel. In this
configuration, the driver must move from one device to the next as quickly as
possible in order to gather information at an effective rate. As more devices are
added or more information is requested from a single device, the overall update
rate begins to suffer.

If the SIXNET UDR Driver driver could only define one single channel, then the example shown above would
be the only option available; however, the SIXNET UDR Driver driver can define up to 32 channels. Using
multiple channels distributes the data collection workload by simultaneously issuing multiple requests to the
network. An example of how the same applicationmay appear when configured using multiple channels to
improve performance is shown below.

Each device has now been defined under its own channel. In this new configuration,
a single path of execution is dedicated to the task of gathering data from each
device.If the application has 32 or fewer devices, it can be optimized exactly how it is
shown here.

The performance will improve even if the application has more than 32 devices.
While 32 or fewer devices may be ideal, the application will still benefit from
additional channels. Although by spreading the device load across all channels will
cause the server to move from device to device again, it can now do so with far less
devices to process on a single channel.

The technique described above is generally applicable to Ethernet devices only because most serial drivers
impose a limit of one channel per COM port. Such drivers have already optimized serial communications
though single channels as much as possible. This driver is different because it bypasses the normal low level
serial communications software components and uses components supplied by SIXNET. These components
remove the one channel per COM port restriction. Though single channel per COM port performance will
remain very good using these components, it is possible in some cases to improve overall performance by
creating two or more channels per COM port, especially if high baud rates are used.

Users are not limited to a one-to-one server-device/physical-device relationship. If the device and network
are fast enough, additional performance gains may be made by creating a duplicate device on another
channel and then dividing tag blocks equally between them. Similarly, users are free to mix slave andmaster

www.ptc.com

25



SIXNET UDR Driver

devices on the same channel, faster slave tag updates may result if master and slave devices are placed on
separate channels.

Block Size, which is available on each defined device, can also affect the SIXNET UDR Driver performance.
Block Size refers to the number of bytes that may be requested from a device at one time. To refine the
driver's performance, configure Block Size to 1 to 120 registers and 8 to 800 bits. Unless highly scattered
addresses are being read, larger block sizes generally result in better performance.

See Also: SIXNET Software Components: Universal Driver Components

www.ptc.com

26



SIXNET UDR Driver

Automatic Tag Database Generation
Overview
This driver makes use of the OPC Server's Automatic Tag Database Generation feature. This feature
enables drivers to automatically create tags to access data used in a device configuration. Although it is
sometimes possible to query a device for the information needed to build a tag database, this driver must
use a Tag Import File instead. Tag import files can be generated using the SIXNET I/O Tool Kit device
configuration application.

Creating the Tag Import File
The tag import file can be created from the SIXNET I/O Tool Kit application.

1. After a device configuration has been configured with the tool kit, right-click on the device and select
Export CSV... to export the tag data.

2. Click Browse... to specify the destination of the export file. ChooseMode to overwrite current file
or Append new tags to existing file.

3. Attaching a station prefix to the tag names largely depends on the application. A prefix can be
separated from the tag name with an underscore or period. Since tag names with periods are not
allowed by the OPC Server, the driver will automatically replace periods with underscores.

Note: The period separator is allowed here for compatibility with other applications.

4. For convenience, export the tags for all of the stations configured in the tool kit project into a single
file. Tags will need to be imported into each OPC Server device individually.

5. Allow the tool kit to export unnamed tags. The driver will generate names for these tags during
import. If planning to manually edit the export file, users may wish to have the tool kit sort the
exported data. The driver does not require the data to be sorted.

6. Once all of the export options have been specified, click Export to create the file.

OPC Server Configuration

www.ptc.com

27



SIXNET UDR Driver

The automatic tag database generation feature is customizable. The primary control options can be set
during the Database Creation step of the Device Wizard or later by selecting the Database Creation tab of
the Device Properties. For more information, refer to the OPC Server's Help documentation.

The SIXNET UDR Driver requires specification of the tag import file's name and location in addition to these
basic settings, which are common to all drivers that support automatic tag database generation. The tag
name information can be specified during the Tag Import step of the Device Wizard or later by selecting the
Tag Import tab of the Device Properties. For more information, refer to Tag Import.

Operation
Depending on the configuration, tag generationmay either start automatically when the OPC Server project
starts or be initiated manually at some other time. The OPC Server's event log will show when the tag
generation process started, any errors that occurred while processing the variable import file and when the
process completed.

Although tags for multiple stations may be included in a single export file, the server must import tags for
each of its devices individually. The driver selects a tag for import when the station number specified in the
file is the same as the station number configured for the device. For more information, refer to Station.

If no tag name is specified in the export file, the driver will generate a name of the form Unnamed_x, where
x is an integer.

www.ptc.com

28



SIXNET UDR Driver

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Missing address
Device address '<address>' contains a syntax error
Address '<address>' is out of range for the specified device or register
Data Type '<type>' is not valid for device address '<address>'
Device address '<address>' is Read Only
Array size is out of range for address '<address>'
Array support is not available for the specified address: '<address>'

Device Status Messages
Device '<device name>' is not responding
Unable to write to '<address>' on device '<device name>'

Driver Error Messages
Could not allocate memory for slave device '<device name>'
Failed to create master SIXNET interface for channel '<channel>'
Failed to create SIXNET interface for slave device '<station number>' on channel
'<channel>'
Failed to open master session for channel '<channel>'
Failed to open session for slave device '<station number>' on channel '<channel>'
Failed to build request for device '<station number>' on channel '<channel>'
Failed to send request for device '<station number>' on channel '<channel>'
Failed to build ACK for device '<station number>' on channel '<channel>'
Failed to send ACK for device '<station number>' on channel '<channel>'
Failed to build NAK for device '<station number>' on channel '<channel>'
Failed to send NAK for device '<station number>' on channel '<channel>'

Automatic Tag Database Generation Messages
Tag import failed due to low memory resources
File exception encountered during tag import
Imported tag name changed from '<old name>' to '<new name>' (record: <record>)
Tag '<name>' (record: <record>) could not be imported due to name conflict
Tag not imported due to unknown I/O type (record: <record>)
Tag could not be imported due to unsupported data type (record: <record>)

Missing address
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically has no length.

www.ptc.com

29



SIXNET UDR Driver

Solution:
Re-enter the address in the client application.

Device address '<address>' contains a syntax error
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically contains one or more invalid characters.

Solution:
Re-enter the address in the client application.

Address <address>' is out of range for the specified device or register
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically references a location that is beyond the range of
supported locations for the device.

Solution:
Verify that the address is correct; if not, re-enter it in the client application.

Data Type '<type>' is not valid for device address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address '<address>' is Read Only
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically has a requested access mode that is not compatible with
what the device supports for that address.

Solution:
Change the access mode in the client application.

www.ptc.com

30



SIXNET UDR Driver

Array size is out of range for address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically is requesting an array size that is too large for the
address type or block size of the driver.

Solution:
Re-enter the address in the client application to specify a smaller value for the array or a different starting
point.

Array Support is not available for the specified address: '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified dynamically contains an array reference for an address type that does
not support arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

Device <Device name>' is not responding
Error Type:
Serious

Possible Cause:

1. The connection between the device and the Host PC is broken.

2. The IP address assigned to the device is incorrect.

3. In some Sixnet models, this error message will be recieved if there is an attempt to access data
outside of the address memory range. In this situation, the server does not receive a NAK from the
device and assumes that connection is lost.

4. The response from the device took longer to receive than the amount of time specified in the
"Request Timeout" device setting.

Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify the IP address given to the named device matches that of the actual device.

3. Verify that there is no attempt to ask for data outside the address memory range.

4. Increase the Request Timeout setting so that the entire response can be handled.

www.ptc.com

31



SIXNET UDR Driver

Unable to write to '<address>' on device '<device name>'
Error Type:
Serious

Possible Cause:

1. The connection between the device and the Host PC is broken.

2. The named device may have been assigned an incorrect IP address.

Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify the IP address given to the named device matches that of the actual device.

Could not allocate memory for slave device '<device name>'
Error Type:
Warning

Possible Cause:
Lowmemory resources available on the Host PC.

Solution:
Shut down all unnecessary applications and retry.

Failed to create master SIXNET interface for channel '<channel>'
Error Type:
Warning

Possible Cause:
Lowmemory resources available on the Host PC.

Solution:
Shut down all unnecessary applications and retry.

Failed to create SIXNET interface for slave device '<station number>' on
channel '<channel>'
Error Type:
Warning

Possible Cause:
Lowmemory resources available on the Host PC.

Solution:
Shut down all unnecessary applications and retry.

www.ptc.com

32



SIXNET UDR Driver

Failed to open master session for channel '<channel>'
Error Type:
Warning

Possible Cause:

1. Session limit exceeded.

2. Invalid COM port or Ethernet adapter specified.

3. Low level SIXNET communication component Six32com.exe or Udrcom32.dll not found.

4. Low computer resources.

Solution:

1. SIXNET software components used by this driver and SIXNET applications limit the number of
sessions that can be open a time.

2. Reduce the number of sessions used.

3. Verify specified COM port or Ethernet adapter card exist on the Host PC.

4. Make sure Six32com.exe and Udrcom32.dll are present in the system folder.

5. Shut down all unnecessary applications and retry.

See Also:
SIXNET Software Components: Universal Driver Components

Failed to open session for slave device '<station number>' on channel
'<channel>'
Error Type:
Warning

Possible Cause:

1. Session limit exceeded.

2. Invalid COM port or Ethernet adapter specified.

3. Low level SIXNET communication component Six32com.exe or Udrcom32.dll not found.

4. Low computer resources.

Solution:

1. SIXNET software components used by this driver and SIXNET applications limit the number of
sessions that can be open a time.

2. Reduce the number of sessions used.

3. Verify specified COM port or Ethernet adapter card exist on the Host PC.

www.ptc.com

33



SIXNET UDR Driver

4. Make sure Six32com.exe and Udrcom32.dll are present in the system folder.

5. Shut down all unnecessary applications and retry.

See Also:
SIXNET Software Components: Universal Driver Components

Failed to build request for device '<station number>' on channel
'<channel>'
Error Type:
Warning

Possible Cause:
SIXNET communication software component could not construct UDR (Universal DRiver protocol) request
from data provided by driver. This problem occurred when attempting to build a read or write request for a
master device object.

Solution:
Document the precise circumstances that lead to the error and then contact Technical Support.

Failed to send request for device '<station number>' on channel
'<channel>'
Error Type:
Warning

Possible Cause:
SIXNET communication software component could not processes a send request from data provided by
driver. This problem occurred when attempting to send a read or write request for a master device object.

Solution:
Document the precise circumstances that lead to the error and then contact Technical Support.

Failed to build ACK for device '<station number>' on channel '<channel>'
Error Type:
Warning

Possible Cause:
SIXNET communication software component could not construct UDR (Universal DRiver protocol) request
from data provided by driver. This problem occurred when attempting to build a acknowledged (ACK)
response to a successfully processed unsolicited message.

Solution:
Document the precise circumstances that lead to the error and then contact Technical Support.

Failed to send ACK for device '<station number>' on channel '<channel>'
Error Type:

www.ptc.com

34



SIXNET UDR Driver

Warning

Possible Cause:
SIXNET communication software component could not processes a send request from data provided by
driver. This problem occurred when attempting to send a acknowledged (ACK) response to a successfully
processed unsolicited message.

Solution:
Document the precise circumstances that lead to the error and then contact Technical Support.

Failed to build NAK for device '<station number>' on channel '<channel>'
Error Type:
Warning

Possible Cause:
SIXNET communication software component could not construct UDR (Universal DRiver protocol) request
from data provided by driver. This problem occurred when attempting to build a not-acknowledged (NAK)
response to an unsolicited message.

Solution:
Document the precise circumstances that lead to the error and then contact Technical Support.

Failed to send NAK for device '<station number>' on channel '<channel>'
Error Type:
Warning

Possible Cause:
SIXNET communication software component could not processes a send request from data provided by
driver. This problem occurred when attempting to build a not-acknowledged (NAK) response to an
unsolicited message.

Solution:
Document the precise circumstances that lead to the error and then contact Technical Support.

Tag import failed due to low memory resources
Error Type:
Serious

Possible Cause:
The driver could not allocate memory required to process tag import file.

Solution:
Shutdown all unnecessary applications and retry.

File exception encountered during tag import
Error Type:
Serious

www.ptc.com

35



SIXNET UDR Driver

Possible Cause:
The tag import file could not be read.

Solution:
Regenerate the tag import file and retry.

Imported tag name changed from '<old name>' to '<new name>' (record:
<record>)
Error Type:
Warning

Possible Cause:
The tag name encountered in the tag import file contained invalid characters.

Solution:
The driver will construct a valid name based on the one from the tag import file. To prevent this error in the
future, and to maintain name consistency, change the tag name in the device configuration if possible.

Tag '<name>' (record: <record>) could not be imported due to name
conflict
Error Type:
Warning

Possible Cause:
The tag name encountered in the tag import file contained invalid characters. The driver could not modify
the name in such a way that is would be unique and valid.

Solution:
Change the tag name in the device configuration if possible, change the name in the export file using a text
editor or manually define the tag in the OPC server.

Tag not imported due to unknown I/O type (record: <record>)
Error Type:
Warning

Possible Cause:
The driver recognizes the following I/O types only:

0 (Analog Input)
1 (Analog Output)
10 (Digital Input)
11 (Digital Output)
20 (Long Input)
21 (Long Output)
22 (Float Input)
23 (Float Output)

www.ptc.com

36



SIXNET UDR Driver

Solution:
Correct the record in the export file if in error.

Tag could not be imported due to unsupported data type (record:
<record>)
Error Type:
Warning

Possible Cause:
The driver recognizes the following I/O types only:

1. Discrete (bit)

2. Short (signed 16 bit integer)

3. Ushort (unsigned 16 bit integer)

4. Long (signed 32 bit integer)

5. Ulong (unsigned 32 bit integer)

6. Float (32 bit IEEE floating point)

Solution:
Correct the record in the export file if in error or choose an alternate, compatible data type.

www.ptc.com

37



SIXNET UDR Driver

Index

1

16 Bit 18

3

32 Bit 18

A

Address '<address>' is out of range for the specified device or register. 30

Address Descriptions 23

Address Validation 29

Allow Sub Groups 17

Analog Output 24

Array size is out of range for address '<address>' 31

Array Support 24, 31

ASCII Hex 19

Attempts Before Timeout 15

Automatic Tag Database Generation 28

B

Block Sizes 19

C

Channel Assignment 13

Channel Setup 8

COM 8, 12, 33

Communications 11

Communications Timeouts 14-15

Connect Timeout 15

Could not allocate memory for slave device '<device name>' 32

CRC 21

www.ptc.com

38



SIXNET UDR Driver

Create 17

D

Data Collection 13

Data Type '<type>' is not valid for device address '<address>' 30

Data Types Description 22

Delete 17

Description 13

Device '<device name>' is not responding 31

Device address '<address>' contains a syntax error 30

Device address '<address>' is Read Only 30

Device ID 7

Device Properties 12

Device Properties — General 12

Device Properties — Tag Generation 15

Device Status Messages 29

Digital Input 19

Do Not Scan, Demand Poll Only 14

Driver 13

Driver Error Messages 29

Driver Setup 6

DTR 12

E

Error Descriptions 29

Error/warning 29

Ethernet 8, 11-12, 33

Ethernet Network 8

External Dependencies 5

F

Failed to build ACK for device '<station number>' on channel '<channel>' 34

Failed to build NAK for device '<station number>' on channel '<channel>' 35

Failed to build request for device '<station number>' on channel '<channel>' 34

Failed to create master SIXNET interface for channel '<channel>' 32

www.ptc.com

39



SIXNET UDR Driver

Failed to create SIXNET interface for slave device '<station number>' on channel '<channel>' 32

Failed to openmaster session for channel '<channel>' 33

Failed to open session for slave device '<station number>' on channel '<channel>' 33

Failed to send ACK for device '<station number>' on channel '<channel>' 34

Failed to send NAK for device '<station number>' on channel '<channel>' 35

Failed to send request for device '<station number>' on channel '<channel>' 34

File exception encountered during tag import 35

G

General 12

Generate 16

I

I/O 12

I/O Tool Kit 4

I/O Type 20

ID 13

Imported tag name changed from '<old name>' to '<new name>' (record: <record>) 36

Initial Updates from Cache 14

Inter-Request Delay 15

Invalid COM 33

IOXCHG 20

IP 31-32

M

Master Access 20

Master Open Addressing 23

Missing address 29

Model 13

Motorola 18

N

NAK 21

Name 12

www.ptc.com

40



SIXNET UDR Driver

Network 4, 7-8, 12, 18, 25

Network Interface Card 8

NIC 8

Non-CRC 21

Not-acknowledged 35

O

On Device Startup 16

On Duplicate Tag 16

On Property Change 16

OPC 6

OPC Server 4

Optimizing Your SIXNET UDR Communications 25

Output 19

Overview 4

Overwrite 17

P

Parent Group 17

Passthru 7

PUTA 20

PUTD 20

R

Remote I/O Tool Kit 6

Remote IP 18

Request All Data at Scan Rate 14

Request Data No Faster than Scan Rate 14

Request Timeout 15

Respect Client-Specified Scan Rate 14

Respect Tag-Specified Scan Rate 14

RS-485 7-8

RTS 12

www.ptc.com

41



SIXNET UDR Driver

S

ScanMode 14

Sessions 33

Settings 18

Simulated 13

Six32com.exe 6, 33

SIXNET 6, 33, 35

SIXNET application 6

SIXNET EtherTRAK I/O 7

SIXNET RemoteTRAK I/O 7

SIXNET SIXTRAK 7

SIXNET Software Components: Universal Driver Components 6

SIXNET UDR 7

SIXNET Universal Driver 6

SIXNET VersaTRAK RTUs 7

Sixtrack.ini 6

Slave 12

Slave Addressing 24

Slave Devices 20

Station 17

Supported Devices 7

T

Tag '<name>' (record: <record>) could not be imported due to name conflict 36

Tag could not be imported due to unsupported data type (record: <record>) 37

Tag Generation 15

Tag Import 19

Tag import failed due to lowmemory resources 35

Tag not imported due to unknown I/O type (record: <record>) 36

TCP/IP 4

U

UDP 4

UDR 6, 35

Udrcom32.dll 6, 33

www.ptc.com

42



SIXNET UDR Driver

Unable to write to '<address>' on device '<device name>' 32

Universal DRiver 35

Use Ethernet 11

W

Windows XP/2000/NT/98 4

X

Xon/Xoff 12

www.ptc.com

43


	SIXNET UDR Driver
	Table of Contents
	SIXNET UDR Driver
	Overview
	External Dependencies

	Driver Setup
	SIXNET Software Components: Universal Driver Components

	Device Setup
	Networks
	Channel Setup
	Channel Properties — General
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties - Communication

	Device Properties
	Device Properties — General
	Device Properties — Scan Mode
	Device Properties — Timing
	Device Properties — Tag Generation
	Device Properties - Station
	Device Properties - Settings
	Device Properties - Block Sizes
	Device Properties - Tag Import
	Slave Devices


	Data Types Description
	Address Descriptions
	Master Open Addressing
	Slave Addressing

	Optimizing Communications
	Automatic Tag Database Generation
	Error Descriptions
	Missing address
	Device address '<address>' contains a syntax error
	Address <address>' is out of range for the specified device or register
	Data Type '<type>' is not valid for device address '<address>'
	Device address '<address>' is Read Only
	Array size is out of range for address '<address>'
	Array Support is not available for the specified address: '<address>'
	Device <Device name>' is not responding
	Unable to write to '<address>' on device '<device name>'
	Could not allocate memory for slave device '<device name>'
	Failed to create master SIXNET interface for channel '<channel>'
	Failed to create SIXNET interface for slave device '<station number>' on chan...
	Failed to open master session for channel '<channel>'
	Failed to open session for slave device '<station number>' on channel '<chann...
	Failed to build request for device '<station number>' on channel '<channel>'
	Failed to send request for device '<station number>' on channel '<channel>'
	Failed to build ACK for device '<station number>' on channel '<channel>'
	Failed to send ACK for device '<station number>' on channel '<channel>'
	Failed to build NAK for device '<station number>' on channel '<channel>'
	Failed to send NAK for device '<station number>' on channel '<channel>'
	Tag import failed due to low memory resources
	File exception encountered during tag import
	Imported tag name changed from '<old name>' to '<new name>' (record: <record>)
	Tag '<name>' (record: <record>) could not be imported due to name conflict
	Tag not imported due to unknown I/O type (record: <record>)
	Tag could not be imported due to unsupported data type (record: <record>)

	Index

